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The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided
barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a
filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the
system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging
over the “fast” variables. The averaged stochastic equations are solved exactly by the method of moments for
the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based
moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately
for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once
again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear
system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excita-
tions are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numeri-
cal simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear
intensity.
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I. INTRODUCTION

Many nonsmooth factors arise very naturally in engineer-
ing applications, such as impacts, collisions, dry frictions,
and so on. Most of the previous literatures fastened on the
study of either nonsmooth nonlinear deterministic systems or
nonsmooth linear stochastic systems. For deterministic non-
smooth systems, the dynamics of a periodically forced im-
pact system was investigated in Ref. �1� and the bifurcations
and chaos of two-degree-of-freedom linear vibro-impact sys-
tems were explored by the Pioncaré map in Refs. �2–6�. In
recent years, the particular bifurcations unique to nonsmooth
systems have been examined extensively �7–12�. In practice,
engineering structures are often subjected to time-dependent
loadings of stochastic nature, such as the natural phenomena
due to wind gusts, earthquakes, ocean waves, and random
disturbance or noise which always exists in a physical sys-
tem. The influence of random excitation on the dynamical
behavior of an impact dynamical system has caught the at-
tention of many researchers. Some analysis methods, e.g.,
linearization method �13�, quasistatic approach method
�14,15�, Markov processes method �16,17�, stochastic aver-
aging method �18,19�, variable transformation method
�20,21�, energy balance method �22�, mean impact Poincaré
map method �23�, and numerical simulation method �24�,
have been developed. In Ref. �25�, the authors tried to review
and summarize the existing methods, results, and literature
available for solving problem of stochastic vibro-impact sys-
tems. However, most of researches are focused on responses
of linear �here, “linear” means that the differential equation
of motion between impacts is linear� impact oscillator under
wide-band random excitations and few are focused on the
responses of linear �26� especially of nonlinear impact oscil-

lator under narrow-band random excitation. In Ref. �26�, Di-
mentberg et al. discussed the subharmonic response of a lin-
ear impact system with a rigid one-sided barrier under a
special kind of narrow-band random excitation—sinusoidal
force with disorder or random-phase modulation—in detail.
However, as pointed by Dimentberg et al., for certain appli-
cations, the model of a filtered Gaussian white noise may be
more appropriate for the basic narrow-band random excita-
tion rather than one used in �26�. In this paper, the subhar-
monic response of single-degree-of-freedom nonlinear vibro-
impact oscillator with a one-sided barrier, which is slightly
offset from the system’s equilibrium position, under the gen-
eral narrow-band random excitation—a filtered Gaussian
white noise—is investigated. The impact considered here is
an instantaneous impact with restitution factor e. The paper
is organized as follows. In Sec. II, the Zhuravlev transforma-
tion and stochastic averaging method are used to obtain the
mean-square amplitude of the response. In Sec. III, the di-
rectly numerical simulations verify the analytical result.
Conclusions are presented in Sec. IV.

II. SYSTEM DESCRIPTION AND THEORETICAL
ANALYSES

Considering the single-degree-of-freedom nonlinear
vibro-impact oscillator to random excitations

� ÿ + 2�ẏ + �2y + �y3 = h��t�, y � �

ẏ+ = − eẏ−, y = � ,
� �1�

where dot indicates differentiation with respect to time t, �
and � are damping coefficient and natural frequency, respec-
tively, � represents the intensity of the nonlinear term, �
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represents the distance from the system’s static equilibrium
position to the single rigid barrier, 0�e�1 is the restitution
factor to be a known parameter of impact losses, whereas
subscripts “minus” and “plus” refer to values of response
velocity just before and after the instantaneous impact. Thus
ẏ+ and ẏ− are actually rebound and impact velocities of the
mass, respectively. They have the same magnitude whenever
e=1, therefore, this special case is that of elastic impacts,
whereas in case e�1, some impact losses are observed. h
denotes the intensity of the random excitation and ��t� is
chosen to be a zero-mean Gaussian narrow-band random ex-
citation. It could be obtained by filtering a white noise
through a linear filter, that is

�̈ + 	�̇ + �1
2� = �	�1W , �2�

where �1 is the center frequency of ��t�, 	 is the bandwidth
of the filter, and W�t� is a unit white noise with the autocor-
relation function RW�
�=2���
�, and � is the Dirac delta
function. The subharmonic response of system �1� is dis-
cussed in detail by Dimentberg et al. �26� for the case of
linear system ��=0� and ��t� is a sinusoidal force with dis-
order as the following:

��t� = sin �t�, ̇�t� = �1 + 	W�t� . �3�

However, as pointed by Dimentberg et al., for certain appli-
cations, the model of a filtered Gaussian white noise gov-
erned by Eq. �2� may be more appropriate for the basic
narrow-band random excitation rather than one used in �26�.
From Eq. �2�, ��t� may be rewritten as �27�

��t� = �1�t�sin �1t + �2�t�cos �1t , �4�

where �1�t� and �2�t� are slowly varying random functions of
time. In fact, substituting Eq. �4� into Eq. �2� and performing
deterministic and stochastic averagings of the equations de-
scribing the modulations of �1�t� and �2�t� with time, one
obtains

�̇1 +
	

2
�1 =�	

2
W1, �̇2 +

	

2
�2 =�	

2
W2. �5�

The unit white-noise components W1 and W2 are indepen-
dent. The autocorrelation functions of �1�t� and �2�t� are

R�1
�
� = R�2

�
� = �e−	�
�/2.

The correlation time of �1�t� and �2�t� is O� 1
	 � and this means

that for sufficiently small values of 	, �1�t� and �2�t� are
slowly varying random functions of time. From Eq. �4�, ��t�
may be rewritten as

��t� = ��1
2 + �2

2 sin��1t + �t��, �t� = arctan
�2

�1
. �6�

Obviously, �t� is also a slowly varying random function of
time.

Following Zhuravlev �20�, the nonsmooth transformation
of state variables is introduced as follows:

y = �x� + �, ẏ = ẋ sgn x , �7�

where sgn x is the signum function such that sgn x=1 for
x�0 and sgn x=−1 for x�0. Obviously, this transformation
makes the transformed velocity ẋ continuous at the impact
instants �i.e., x=0� in the special case of elastic impact �i.e.,
e=1�, thereby reducing the problem to one without velocity
jumps. However, this is not the case with a general vibro-
impact system with impact losses. The jump of the trans-
formed velocity ẋ becomes proportional to 1−e instead of
1+e for the jump of original velocity ẏ. This jump may be
included in the transformed differential equation of motion
by using the Dirac delta function ��x�. Since x�t��=0 at the
impact instant t� and ��t− t��= �ẋ���x�, the impulsive term can
be obtained as

�ẋ+ − ẋ−���t − t�� = �1 − e�ẋ�ẋ���x� .

The transformed equation of motion can be written by sub-
stituting Eqs. �6� and �7� into Eq. �1� as

ẍ + �2x = − 2�ẋ − ��2 sgn x − �1 − e�ẋ�ẋ���x� − ���x�

+ ��3sgn x + h��1
2 + �2

2 sgn x sin��1t + �t�� .

�8�

Thus, the original impact system �1� is reduced to the
“common” vibration system �8� without impact. The term
�1−e�ẋ�ẋ���x� on the right-hand side of Eq. �8� describes the
impact losses of system, which can be regarded as an impul-
sive damping term. The transformed equation �8� permits
rigorous analytical study by the asymptotic method of aver-
aging over the period as long as coefficients � ,� ,� ,h, and
1−e are all small and proportional to a small parameter.
Moreover, only subharmonic resonant responses will be con-
sidered, i.e., frequency �1 of the random excitation is near
the subharmonic resonant frequency 2n�, �1	2n�, where
n is an arbitrary positive integer. The detuning parameter � is
defined according to �=�1−2n�; � is assumed to be small
and proportional to a small parameter. Then the right-hand
side of Eq. �8� is small and one has ẍ+�2x	0. The general
solution of equation ẍ+�2x=0 is

x = C1 sin��t + C2�, ẋ = �C1 cos��t + C2� ,

where C1 and C2 are arbitrary constants. Then, as usually do
in stochastic averaging progress, the response of Eq. �8� can
be approximately represented as

x = A�t�sin ��t�, ẋ = �A�t�cos ��t� . �9�

By introducing a new slowly varying phase shift
��t�=�1t+�t�−2n��t�, Eq. �8� can be transformed to the
following pair of first-order equations:
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Ȧ =

cos �

�
� − 2��A cos � − ��2 sgn�sin �� − �1 − e��2A cos ��A cos ���A sin ��

− ���A sin �� + ��3sgn�sin �� + h��1
2 + �2

2 sgn�sin ��sin�� + 2n�� �

�̇ = � +
2n sin �

�A
�− 2��A cos � − ��2 sgn�sin �� − �1 − e��2A cos ��A cos ���A sin ���

� − ���A sin �� + ��3sgn�sin �� + h��1
2 + �2

2 sgn�sin ��sin�� + 2n�� +�	

2

W2�1 − W1�2

�1
2 + �2

2 .� �10�

Under the foregoing assumption that damping, intensity of nonlinear term, impact losses, and excitation terms are small, the

right-hand sides of both Eqs. �10� are proportional to a small parameter, the derivatives Ȧ and �̇ are both small, then A ,� are
all slowly varying random processes with respect to time t. According to the definition of ��t�, one has

��t� =
1

2n
��1t + �t� − ��t��, �̇ =

1

2n
��1 + ̇ − �̇� ,

where �t� and ��t� are both slowly varying random functions of time and the derivatives ̇ and �̇ are both small, while

�̇	
�1

2n is not small and then � is a fast varying random process. By averaging over the fast state variables � ,W1 and W2, the
following shortened equations can be obtained:



Ȧ = − �1A + q� cos �

�̇ = �� −
3n��2

�
� −

q

A
� sin � −

�

A
−

n�

�
� 8

�
�A +

3

4
A2�

�1 = � +
1 − e

�
�,q =

4nh

�4n2 − 1���
,� =

4n��

�
�1 − ��2�,� = ��1

2 + �2
2.
 �11�

Equation �11� shows that the difference between elastic impact �e=1� and inelastic impact �e�1� is that inelastic impact
increases the damping of the system from � to �1=�+ 1−e

� �. Introducing another new pair of state variables

u = A cos �, v = A sin � , �12�

Eq. �11� can be transformed to


u̇ = − �1u − �� −
3n��2

�
�v +

�v
�u2 + v2

+
n�v
�

� 8

�
��u2 + v2 +

3

4
�u2 + v2�� + q� ,

v̇ = − �1v + �� −
3n��2

�
�u −

�u
�u2 + v2

−
n�u

�
� 8

�
��u2 + v2 +

3

4
�u2 + v2�� .  �13�

It should be noted that an exact analytical study to system �13� seems impossible due to nonlinear nature. Thus, approximate
solutions of the second-order moments of the subharmonic response are proposed. Equation �13� seems to be linear if
�=0, �=0��=0� and thus is amenable to an exact analysis by the method of moments �28�. For the case of linear system with
zero offset ��=0, �=0�, Eq. �13� can be written as

u̇ = − �1u − �v + q�, v̇ = − �1v + �u . �14�

While the response moments of any order can be predicted easily from Eq. �14�, only the mean-square amplitude
EA2=E�u2+v2� will be considered here, where E denotes the mathematics expectation. For steady-state response, one has

dEu2

dt
=

dEv2

dt
=

dEuv
dt

=
dEu�

dt
=

dEv�

dt
= 0. �15�

From Eqs. �5�, �14�, and �15�, applying the expectation operator and equating the time derivative to zero for a steady-state
solution yield



− �1Eu2 − �Euv + qEu� = 0,�Euv − �1Ev2 = 0

�Eu2 − 2�1Euv − �Ev2 + qEv� = 0

��1 +
	

2
�Eu� + �Ev� = qE�2,�Eu� − ��1 +

	

2
�Ev� = 0. �16�
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Form Eq. �5�, one has E�2=E��1
2+�2

2�=1. Substituting this expression into Eq. �16�, one can obtain the solution of Eq. �16� as


 Eu2 =

q2��1
3 +

�1
2	

2
+

�2	

4
�

�1��1
2 + �2���� +

	

2
�2

+ �2� ,Euv =

q2���1 +
	

4
�

��1
2 + �2����1 +

	

2
�2

+ �2� ,

Ev2 =

q2�2�� +
	

4
�

�1��1
2 + �2����1 +

	

2
�2

+ �2� ,Eu� =

q��1 +
	

2
�

��1 +
	

2
�2

+ �2

,Ev� =
q�

��1 +
	

2
�2

+ �2

. �17�

Then mean-square amplitude can be obtained from Eq. �17� as

EA2 = Eu2 + Ev2 =

q2��1 +
	

2
�

�1���1 +
	

2
�2

+ �2� . �18�

In can be seen from formula �18� that the mean-square amplitude-frequency response curves are symmetric with respect to the
corresponding resonant frequency of any given order n, i.e., same for positive and negative detunings.

Next, we discuss the mean-square amplitude of system �13� for the case of linear system ��=0�, i.e., system �1� is linear,
with nonzero offset ��0. Equation �13� can be written as


u̇ = − �1u − �v +
�v

�u2 + v2
+ q�

v̇ = − �1v + �u −
�u

�u2 + v2
.  �19�

As long as the Eq. �19� is nonlinear for nonzero �, this requires use of some closure scheme. Denoting
A�

2=EA2=E�u2+v2� and substituting all �u2+v2 terms in the right-hand side of Eq. �19� by A�, Eq. �19� can be transformed to
the following linear equation:

u̇ = − �1u − �� −
�

A�

�v + q�, v̇ = − �1v + �� −
�

A�

�u . �20�

Equation �20� is in the same form with Eq. �14�, then from formula �18�, one obtains the equation of A� as

A�
2 =

q2��1 +
	

2
�

�1���1 +
	

2
�2

+ �� −
�

A�

�2� , �21�

Equation �21� has the following solution:

A� =

�1�� ���1
2�2�2 + �1���1 +

	

2
�2

+ �2��q2��1 +
	

2
� − �1�2�

�1���1 +
	

2
�2

+ �2� . �22�

It should be noted that the foregoing method to obtain the approximate solution of Eq. �19� has been presented by Dimentberg
et al. �26� and will be used again for the case of nonlinear system ���0� in the following discussion. It can clearly be seen
that with �→0 ��→0�, the squared quantity A�

2 approaches the “exact” mean-square amplitude EA2 as governed by Eq. �18�.
Now we discuss the mean-square amplitude of system �13� for the case of nonlinear system ���0�. Substituting all �u2+v2

terms in the right-hand side of Eq. �13� by A�, Eq. �13� can be transformed to the following linear equation:
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u̇ = − �1u − �� −
3n��2

�
−

�

A�

−
n�

�
� 8

�
�A� +

3

4
A�

2��v + q�

v̇ = − �1v + �� −
3n��2

�
−

�

A�

−
n�

�
� 8

�
�A� +

3

4
A�

2��u .  �23�

Equation �23� is also in the same form with Eq. �14�, then from formula �18�, one obtains the equation of A� as

A�
2 =

q2��1 +
	

2
�

�1���1 +
	

2
�2

+ �� −
3n��2

�
−

�

A�

−
8n��

��
A� −

3n�

4�
A�

2�2� . �24�

Equation �24� can be solved numerically for given param-
eters of the system.

III. NUMERICAL SIMULATION

In this section, the analytical results will be shown and
compared to the directly numerical results. All the directly
numerical simulations by using Monte Carlo method are
based on the original system dominated by Eq. �1�, which
gives powerful validation with analytical results. For the
method of numerical simulation, readers can refer to Zhu
�28� and Shinozuka �29�. The unit white noise W�t� in Eq. �2�
has the power spectrum of a constant over the spectrum
range 0���� such that W�t� has infinite energy and is
physical unrealized. However, for numerical simulation in
this paper, the power spectrum of W�t� is taken as

S��� = 
 1

2�
, 0 � � � 2�

0, � � 2� .


For numerical simulation, it is more convenient to use the
pseudorandom signal given by �28�

W�t� =�2�

N�
�
k=1

N

cos��

N
�2k − 1�t + k� ,

where k’s are independent and uniformly distributed in
�0,2�� and N is a larger integer number. A realization of
W�t� is shown in Fig. 1 and the sample mean is −0.0264.

Monte Carlo simulations are focused on the first-order
subharmonics �n=1, �1	2��, although the higher-order
subharmonics ��1	2n� , n=2,3 ,4 , . . .� simulations should
be of the same importance. The governing equations �1� and
�2� are numerically integrated by the fourth-order Runge-
Kutta algorithm between impacts, which is valid until the
first encounter with the barriers, that is until the equality y
=� is satisfied. The impact condition ẏ+=−eẏ− is then im-
posed using the numerical solution ẏ−. This results in the
rebound velocity ẏ+, thereby providing the initial values for
the next step numerical calculation. In fact, the numerical
solution y�t� will be approximately equal to � �y�t�	��,
then some interpolation techniques should be used to deter-

mine the exact impact time t= t� such that y�t��=�. In this
paper, the linear interpolation method is used to determine
the exact impact time t= t� and impact velocity ẏ−= ẏ�t�−0�.
The following linear vibro-impact oscillator to deterministic
harmonic excitations is used to verify the accuracy of the
Runge-Kutta algorithm and interpolation technique

� ÿ + y = h cos��1t + ��, y � �

ẏ+ = − eẏ−, y = � ,
� �25�

It is easy to obtain the response of system �25�. Such re-
sponse may exist with ratio 1

l of its period to the period of
excitation with integer l and satisfies the following condi-
tions:

y�0� = �, ẏ�0� = ẏ+, y�2�l

�1
� = �, ẏ�2�l

�1
� = ẏ−.

�26�

The steady-state response of system �26� can be obtained as

Time

W(t)

FIG. 1. A realization of W�t�.
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y�t� = y0�t� = a� cos�t −
�l

�1
� + a�1

cos��1t + �� , �27�

where

a� =
� − a�1

cos �

cos��l/�1�
, a�1

=
h

�1 − �1
2�

.

The impact velocity is

ẏ− =
�1 � �1 − �1 − a�1

2 /�2�2�1 + B2���

�1 + B2�D
, �28�

where

B =
1

�1

1 − e

1 + e
tan

�l

�1
, D = −

1

2
�1 + e�cot

�l

�1
. �29�

The numerical results of system �25� are shown in Fig. 2
when h=2, �=0.6, �1=1.1, e=0.8, where z�t�= ẏ�t� de-
note the velocity of the mass. For comparison, the theoretical
results given by Eq. �27� are also shown in Fig. 2. Figure 2
shows that the numerical results are in good agreement with
the theoretical solutions.

In the following numerical simulation, the parameters in
system �1� are chosen as follows:

h = 2.0, � = 0.1, � = 1, n = 1.

The numerical results are shown in Figs. 3 and 4. There are
no units of the axes in all figures since system �1� is a non-
dimensional system.

We first consider the effect of the damping coefficient �
and center frequency �1 on the response amplitude A� of the
system. The variations of the steady-state response A� with
�1 are shown in Fig. 3�a� for the case of linear system as
�=0, 	=0.1, e=0.9, when �=0.15 and �=0.1. For com-
parison, the theoretical results given by Eq. �22� are also
shown in Fig. 3�a�. The mean-square response amplitude was
calculated as A�

2=2�� ẋ
� �2� in numerical simulation, where an-

Displacement y(t)

V
el
oc
ity
z(
t)

FIG. 2. Numerical results of Eq. �25�: ══theoretical solution;
��� numerical solution.

1Ω

*A

*A

γ

*A

α

(a)

(b)

(c)

FIG. 3. Frequency response of system �1�: ══, ―――:
theoretical solution; ���, ���: numerical solution.
�a� ��=0, 	=0.1, e=0.9�, ══: �=0.1, ―――: �=0.15, ���:
��=0.1, ���: �=0.15; �b� ��=0.0, �1=2.08, �=0.1�, ══:
e=1.0, ―――: e=0.9, ���:e=1.0, ���:e=0.9; �c�
��1=1.9, �=0.1, e=0.9, 	=0.1�.
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gular brackets denote common time averaging for the re-
sponse sample. Figure 3�a� shows that the response ampli-
tude predicted by the averaging method is in good agreement
with that obtained by numerical results. It can be seen from
Fig. 3�a� that the response amplitude will decrease when the
damping � increases, which is in accordance with the physi-
cal intuition. The peak response amplitude will become large
when the frequency �1 is near the resonant frequency
�1=2 and will decrease strongly when �1 departs from the
resonant frequency. Comparing to the numerical solution, the
accuracy of the analytical solution is seen to be reduced a
little in the case of large detuning. This may be partly due to
some inaccuracies of the averaging method at large detuning.

Next, we consider the effect of the restitution factor e and
the bandwidth 	 on the response amplitude A� of the system.
The variations of the steady-state response A� with 	 are
shown in Fig. 3�b� for the case �=0.0, �1=2.08, �=0.1,
when e=1.0 and e=0.9. For comparison, the theoretical re-
sults given by Eq. �22� are also shown in Fig. 3�b�. It can be
seen from Fig. 3�b� that the response amplitude A� will de-
crease when 	 increases or e decrease. There are some im-
pact losses when e�1 and the impact losses will increase

when e decreases, leading effectively to a large viscous
damping factor, which is in accordant with the foregoing
theoretical analyses.

Now we consider the effect of the intensity of nonlinearity
� on the response amplitude A� of the system. The variations
of the steady-state response A� with � are shown in Fig. 3�c�
for the case �1=1.9, �=0.1, e=0.9, 	=0.1. For compari-
son, the theoretical results given by Eq. �24� are also shown
in Fig. 3�c�. It can be seen from Fig. 3�c� that the response
amplitude A� will decrease strongly when � increases, there-
fore the nonlinearity should be considered in the analysis of
impact system.

The response time history of system �1� is shown in Figs.
4�a� and 4�b� in the case �1=2.08, �=0, �=0.1, e
=1.0, 	=0.1. The time starts from zero in numerical simu-
lation and the response sample that only starts from 200 is
used such that the response is a stable steady one. The re-
sponse time history of system �1� is shown in Figs. 4�c� and
4�d� in the case �1=2.08, �=0.1, �=0.1, e=1.0, 	=0.1,
for comparison to Figs. 4�a� and 4�b�. All the parameters are
the same in Figs. 4�a� and 4�b� and Figs. 4�c� and 4�d� except
for �, while �=0 in Figs. 4�a� and 4�b� and �=0.1 in Figs.
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FIG. 4. Numerical results of Eq. �1�. ��a� and �c�� Time history of y�t�; ��b� and �d�� Time history of z�t�. ��a� and �b��
��=0, �1=2.08, �=0.1, e=1.0, 	=0.1�, ��c� and �d�� ��=0.1, �1=2.08, �=0.1, e=1.0, 	=0.1�.
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4�c� and 4�d�. It can be seen clearly from Figs. 4�a�–4�d� that
the response amplitude will decrease strongly when � in-
creases.

IV. CONCLUSIONS AND DISCUSSION

In this paper, the response of a nonlinear impact system
under narrow-band random excitation—a filtered Gaussian
white noise—is discussed. The steps of the approach pre-
sented in the paper may be summarized as follows. The fil-
tered Gaussian white noise is rewritten in a sinusoidal force
form for convenient of theoretical analyses first. Then the
method of Zhuravlev transformation is used to translate the
original impact system to a common vibration system with-
out impact, which can be reduced to shortened equations by
averaging the fast state variables. The reduced equations are
solved by the method of moments and exactly analytical so-
lution for the mean-square subharmonic response amplitude
is obtained for the case of linear system with zero offset,
while an approximate perturbational closure scheme is used
for the general case. Comparison to Monte Carlo simulation
results demonstrated high accuracy of the analytical solution.
The basic conclusion of the analysis may be that the peak
response amplitude will become large when the frequency

�1 is near the resonant frequency �1=2� and will decrease
strongly when �1 departs from the resonant frequency or �
increase. The peak response amplitude will also decrease
when 	 and � increase or e decreases.

Small parameters are often required in many averaging
and perturbation methods. However, it is difficult to specify
what they mean for “small” in generally. In this paper, the
theoretical derivations are valid for “small values” of some
of the parameters. The values of these small parameters are
taken as O�1� in numerical simulation.

The approach presented in this paper is appropriate for the
narrow-band random noise in more general case as governed
by Eq. �4�, where �1�t� and �2�t� are slowly varying random
function and are not only defined by Eq. �5�. However, Eq.
�2� is a well-known model and has been widely used, there-
fore is presented in this paper. For a comprehensive survey
of narrow-band random noise, the reader is referred to Stra-
onovich �14� and Zhu �28�.
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